Rabu, 04 November 2009

Gaya

A. GAYA GESEKAN

Gaya gesek adalah gaya yang berarah melawan gerak benda atau arah kecenderungan benda akan bergerak. Gaya gesek muncul apabila dua buah benda bersentuhan. Benda-benda yang dimaksud di sini tidak harus berbentuk padat, melainkan dapat pula berbentuk cair, ataupun gas. Gaya gesek antara dua buah benda padat misalnya adalah gaya gesek statis dan kinetis, sedangkan gaya antara benda padat dan cairan serta gas adalah gaya Stokes.

Secara umum gaya gesek dapat dituliskan sebagai suatu ekspansi deret, yaitu

f = - \mu_{s,k} N \frac{\vec{v}}{|\vec{v}|} - b v \frac{\vec{v}}{|\vec{v}|} - c v^2 \frac{\vec{v}}{|\vec{v}|} - ..,

di mana suku pertama adalah gaya gesek yang dikenal sebagai gaya gesek statis dan kinetis, sedangkan suku kedua dan ketiga adalah gaya gesek pada benda dalam fluida.

Gaya gesek dapat merugikan atau bermanfaat. Panas pada poros yang berputar, engsel pintu yang berderit, dan sepatu yang aus adalah contoh kerugian yang disebabkan oleh gaya gesek. Akan tetapi tanpa gaya gesek manusia tidak dapat berpindah tempat karena gerakan kakinya hanya akan menggelincir di atas lantai. Tanpa adanya gaya gesek antara ban mobil dengan jalan, mobil hanya akan slip dan tidak membuat mobil dapat bergerak. Tanpa adanya gaya gesek juga tidak dapat tercipta paras.

B. GAYA GRAVITASI


Gravitasi adalah gaya tarik-menarik yang terjadi antara semua partikel yang mempunyai massa di alam semesta. Fisika modern mendeskripsikan gravitasi menggunakan Teori Relativitas Umum dari Einstein, namun hukum gravitasi universal Newton yang lebih sederhana merupakan hampiran yang cukup akurat dalam kebanyakan kasus.

Bumi yang memiliki massa yang sangat besar menghasilkan gaya gravitasi yang sangat besar untuk menarik benda-benda disekitarnya, termasuk makhluk hidup, dan benda benda yang ada di bumi. Gaya gravitasi ini juga menarik benda-benda yang ada diluar angkasa, seperti bulan, meteor, dan benda angkasa laiinnya, termasuk satelite buatan manusia.

Hukum gravitasi universal Newton dirumuskan sebagai berikut:

Setiap massa titik menarik semua massa titik lainnya dengan gaya segaris dengan garis yang menghubungkan kedua titik. Besar gaya tersebut berbanding lurus dengan perkalian kedua massa tersebut dan berbanding terbalik dengan kuadrat jarak antara kedua massa titik tersebut.
F = G \frac{m_1 m_2}{r^2}
F adalah besar dari gaya gravitasi antara kedua massa titik tersebut diukur dalam satuan Newton (N)
G adalah konstanta gravitasi, besarnya sama dengan 6,67 × 10−11 N m2 kg−2.
m1 adalah besar massa titik pertama, satuannya dalam kilogram (Kg)
m2 adalah besar massa titik kedua, satuannya dalam kilogram (Kg)
r adalah jarak antara kedua massa titik, satuannya dalam meter (M)

C. HUKUM KEPLER

Hukum I Kepler

Lintasan setiap planet ketika mengelilingi matahari berbentuk elips, di mana matahari terletak pada salah satu fokusnya.

Kepler tidak mengetahui alasan mengapa planet bergerak dengan cara demikian. Ketika mulai tertarik dengan gerak planet-planet, Newton menemukan bahwa ternyata hukum-hukum Kepler ini bisa diturunkan secara matematis dari hukum gravitasi universal dan hukum gerak Newton. Newton juga menunjukkan bahwa di antara kemungkinan yang masuk akal mengenai hukum gravitasi, hanya satu yang berbanding terbalik dengan kuadrat jarak yang konsisten dengan Hukum Kepler.

Perhatikan orbit elips yang dijelaskan pada Hukum I Kepler. Dimensi paling panjang pada orbit elips disebut sumbu mayor alias sumbu utama, dengan setengah panjang a. Setengah panjang ini disebut sumbu semiutama alias semimayor (sambil lihat gambar di bawah ya).

F1 dan F2 adalah titik Fokus. Matahari berada pada F1 dan planet berada pada P. Tidak ada benda langit lainnya pada F2. Total jarak dari F1 ke P dan F2 ke P sama untuk semua titik dalam kurva elips. Jarak pusat elips (O) dan titik fokus (F1 dan F2) adalah ea, di mana e merupakan angka tak berdimensi yang besarnya berkisar antara 0 sampai 1, disebut juga eksentrisitas. Jika e = 0 maka elips berubah menjadi lingkaran. Kenyataanya, orbit planet berbentuk elips alias mendekati lingkaran. Dengan demikian besar eksentrisitas tidak pernah bernilai nol. Nilai e untuk orbit planet bumi adalah 0,017. Perihelion merupakan titik yang terdekat dengan matahari, sedangkan titik terjauh adalah aphelion.

Pada Persamaan Hukum Gravitasi Newton, telah kita pelajari bahwa gaya tarik gravitasi berbanding terbalik dengan kuadrat jarak (1/r2), di mana hal ini hanya bisa terjadi pada orbit yang berbentuk elips atau lingkaran saja.



Hukum II Kepler

Luas daerah yang disapu oleh garis antara matahari dengan planet adalah sama untuk setiap periode waktu yang sama.

Hal yang paling utama dalam Hukum II Kepler adalah kecepatan sektor mempunyai harga yang sama pada semua titik sepanjang orbit yang berbentuk elips.



Hukum III Kepler

Kuadrat waktu yang diperlukan oleh planet untuk menyelesaikan satu kali orbit sebanding dengan pangkat tiga jarak rata-rata planet-planet tersebut dari matahari.

Jika T1 dan T2 menyatakan periode dua planet, dan r1 dan r2 menyatakan jarak rata-rata mereka dari matahari, maka



D. HUKUM NEWTON

H
ukum I Newton berbunyi: “Benda yang dalam keadaan diam akan mempertahankan keadaannya untuk tetap diam dan benda yang sedang bergerak lurus beraturan akan cenderung mempertahankan keadaannya untuk bergerak lurus beraturan dalam arah yang sama selama tidak ada gaya yang bekerja padanya.

" Hukum II Newton berbunyi “Percepatan sebuah benda yang diberi gaya adalah sebanding dengan besar gaya dan berbanding terbalik dengan massa benda.” Dalam bentuk rumus hukum II Newton dapat dituliskan: F = m . a.

Hukum III Newton berbunyi “Setiap ada gaya aksi, maka akan selalu ada gaya reaksi yang besarnya sama tetapi arahnya berlawanan”.

Tidak ada komentar:

Posting Komentar